Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros


Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Pathol ; 174(4): 1379-89, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19246648

RESUMO

Recent studies identified an association between genetic variants in the lymphotoxin-alpha (LTalpha) gene and leprosy. To study the influence of LTalpha on the control of experimental leprosy, both low- and high-dose Mycobacterium leprae foot pad (FP) infections were evaluated in LTalpha-deficient chimeric (cLTalpha(-/-)) and control chimeric (cB6) mice. Cellular responses to low-dose infection in cLTalpha(-/-) mice were dramatically different, with reduced accumulation of CD4(+) and CD8(+) lymphocytes and macrophages and failure to form granulomas. Growth of M. leprae was contained for 6 months, but augmented late in infection. In contrast, tumor necrosis factor knockout and tumor necrosis factor receptor 1 knockout FPs exhibited extensive inflammatory infiltration with an increase in M. leprae growth throughout infection. Following high-dose infection, cB6 FP induration peaked at 4 weeks and was maintained for 12 weeks. Induration was not sustained in cLTalpha(-/-) FPs that contained few lymphocytes and no granulomas. There was a reduction in the expression levels of inflammatory cytokines, chemokines, and chemokine receptors, including nitric oxide synthase 2, vascular cell adhesion molecule, and intercellular cell adhesion molecule. Furthermore, cLTalpha(-/-) popliteal lymph nodes contained a higher proportion of naïve CD44(lo)CD62L(hi) T cells than cB6 mice, suggestive of reduced T cell activation. Therefore, both LTalpha and tumor necrosis factor are essential for the regulation of the granuloma, but they have distinctive roles in the recruitment of lymphocytes and maintenance of the granulomatous response during chronic M. leprae infection.


Assuntos
Hanseníase/imunologia , Linfotoxina-alfa/imunologia , Fator de Necrose Tumoral alfa/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/biossíntese , Citocinas/imunologia , Citometria de Fluxo , Granuloma , Imuno-Histoquímica , Hanseníase/genética , Hanseníase/patologia , Ativação Linfocitária/imunologia , Linfotoxina-alfa/genética , Camundongos , Camundongos Knockout , Receptores do Fator de Necrose Tumoral/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fator de Necrose Tumoral alfa/deficiência , Fator de Necrose Tumoral alfa/genética
2.
Int. j. lepr. other mycobact. dis ; 70(2): 111-118, Jun. 2002. ilus, tab, graf
Artigo em Inglês | SES-SP, HANSEN, HANSENIASE, SESSP-ILSLACERVO, SES-SP | ID: biblio-1227098

RESUMO

Pathogenic mycobacteria must possess efficient survival mechanisms to resist the harsh conditions of the intraphagosomal milieu. In this sense, Mycobacterium lepraemurium (MLM) is one of the most evolved intracellular parasites of murine macrophages; this microorganism has developed a series of properties that allows it not only to resist, but also to multiply within the inhospitable environment of the phagolysosome. Inside the macrophages, MLM appears surrounded by a thick lipid-envelope that protects the microorganism from the digestive effect of the phagosomal hydrolases and the acid pH. MLM produces a disease in which the loss of specific cell-mediated immunity ensues, thus preventing activation of macrophages. In vitro, and possibly also in vivo, MLM infects macrophages without triggering the oxidative (respiratory burst) response of these cells, thus preventing the production of the toxic reactive oxygen intermediaries (ROI). Supporting the idea that MLM is within the most evolved pathogenic microorganisms, in the present study we found, that contrary to BCG, M. lepraemurium infects macrophages without stimulating these cells to produce meaningful levels of tumor necrosis factor alpha (TNF alpha) or nitric oxide (NO). Thus, the ability of the microorganisms to stimulate in their cellular hosts, the production of ROI and RNI (reactive nitrogen intermediates), seems to be an inverse correlate of their pathogenicity; the lesser their ability, the greater their pathogenicity.


Assuntos
Hanseníase/genética , Hanseníase/imunologia , Receptores do Fator de Necrose Tumoral/imunologia , Vacina BCG/imunologia , Vacina BCG/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA